If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15.25x+58.1=0
a = 1; b = 15.25; c = +58.1;
Δ = b2-4ac
Δ = 15.252-4·1·58.1
Δ = 0.16249999999999
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15.25)-\sqrt{0.16249999999999}}{2*1}=\frac{-15.25-\sqrt{0.16249999999999}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15.25)+\sqrt{0.16249999999999}}{2*1}=\frac{-15.25+\sqrt{0.16249999999999}}{2} $
| 10^x=1800 | | 4x^2+61x+930.25=0 | | (1/4x)+x^2-36=0 | | -10=5(2x+1)-5 | | 4-2a=(3a-10) | | 4-2a=(3a-10 | | 15x2−19x=12x2−3x | | 8x+6x2=15x+3x2 | | -24=3(3x+2)+6 | | 2x11=5x-13 | | (2a+1)2=9 | | (2a+1)=9 | | x*5=6*7 | | (x-1)=0.9 | | (x-1)^50=0.9 | | -2x+4=23 | | (4n-3)(n+3)=0 | | f=9/5(36)+32 | | (86+x)÷2=90 | | 3x+6(5x+7)=-222 | | 2|-x-4|+10=16 | | -4x+10=-2x-4 | | -4x+10=2x-4 | | 3x+x+2=180 | | -x+5=75+6x | | -6-6x=7x-58 | | x+4+65=90 | | 1/4{6x+2}-3x=-1/2x-4+2x | | 3x+5+x+7=180 | | x+9+x+5=180 | | X^2+6x=106 | | 4x+5+2x+x=180 |